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Abstract

Suppose we wish to recover a vector x0 ∈ R
m (e.g., a digital signal or image)

from incomplete and contaminated observations y = Ax0 + e; A is an n × m

matrix with far fewer rows than columns (n � m) and e is an error term. Is it

possible to recover x0 accurately based on the data y?

To recover x0, we consider the solution x� to the �1-regularization problem

min ‖x‖�1
subject to ‖Ax − y‖�2

≤ ε,

where ε is the size of the error term e. We show that if A obeys a uniform uncer-

tainty principle (with unit-normed columns) and if the vector x0 is sufficiently

sparse, then the solution is within the noise level

‖x� − x0‖�2
≤ C · ε.

As a first example, suppose that A is a Gaussian random matrix; then stable

recovery occurs for almost all such A’s provided that the number of nonzeros

of x0 is of about the same order as the number of observations. As a second

instance, suppose one observes few Fourier samples of x0; then stable recovery

occurs for almost any set of n coefficients provided that the number of nonzeros

is of the order of n/(log m)6.

In the case where the error term vanishes, the recovery is of course exact, and

this work actually provides novel insights into the exact recovery phenomenon

discussed in earlier papers. The methodology also explains why one can also

very nearly recover approximately sparse signals. c© 2006 Wiley Periodicals,

Inc.

1 Introduction

1.1 Exact Recovery of Sparse Signals

Recent papers [2, 3, 4, 5, 10] have developed a series of powerful results about

the exact recovery of a finite signal x0 ∈ R
m from a very limited number of ob-

servations. As a representative result from this literature, consider the problem of
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recovering an unknown sparse signal x0(t) ∈ R
m , i.e., a signal x0 whose support

T0 = {t : x0(t) �= 0} is assumed to have small cardinality. All we know about x0

are n linear measurements of the form

yk = 〈x0, ak〉, k = 1, . . . , n or y = Ax0,

where the ak ∈ R
m are known test signals. Of special interest is the vastly under-

determined case, n � m, where there are many more unknowns than observations.

At first glance, this may seem impossible. However, it turns out that one can actu-

ally recover x0 exactly by solving the convex program1

(P1) min ‖x‖�1
subject to Ax = y

provided that the matrix A ∈ R
n×m obeys a uniform uncertainty principle.

The uniform uncertainty principle, introduced in [5] and refined in [4], essen-

tially states that the n × m measurement matrix A obeys a “restricted isometry

hypothesis.” To introduce this notion, let AT , T ⊂ {1, . . . , m}, be the n × |T | sub-

matrix obtained by extracting the columns of A corresponding to the indices in T .

Then [4] defines the S-restricted isometry constant δS of A, which is the smallest

quantity such that

(1.1) (1 − δS)‖c‖2
�2

≤ ‖AT c‖2
�2

≤ (1 + δS)‖c‖2
�2

for all subsets T with |T | ≤ S and coefficient sequences (cj )j∈T . This property

essentially requires that every set of columns with cardinality less than S approx-

imately behaves like an orthonormal system. It was shown (also in [4]) that if S

verifies

(1.2) δS + δ2S + δ3S < 1,

then solving (P1) recovers any sparse signal x0 with support size obeying |T0| ≤ S.

1.2 Stable Recovery from Imperfect Measurements

This paper develops results for the “imperfect” (and far more realistic) scenarios

where the measurements are noisy and the signal is not exactly sparse. Everyone

would agree that in most practical situations, we cannot assume that Ax0 is known

with arbitrary precision. More appropriately, we will assume instead that we are

given “noisy” data y = Ax0+e, where e is some unknown perturbation bounded by

a known amount ‖e‖�2
≤ ε. To be broadly applicable, our recovery procedure must

be stable: small changes in the observations should result in small changes in the

recovery. This wish, however, may be quite hopeless. How can we possibly hope to

recover our signal when not only is the available information severely incomplete,

but the few available observations are also inaccurate?

Consider nevertheless (as in [12], for example) the convex program searching,

among all signals consistent with the data y, for that with minimum �1-norm

(P2) min ‖x‖�1
subject to ‖Ax − y‖�2

≤ ε.

1 (P1) can even be recast as a linear program [6].
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The first result of this paper shows that contrary to the belief expressed above,

solving (P2) will recover an unknown sparse object with an error at most propor-

tional to the noise level. Our condition for stable recovery again involves the re-

stricted isometry constants.

THEOREM 1.1 Let S be such that δ3S +3δ4S < 2. Then for any signal x0 supported

on T0 with |T0| ≤ S and any perturbation e with ‖e‖�2
≤ ε, the solution x� to (P2)

obeys

(1.3) ‖x� − x0‖�2
≤ CS · ε,

where the constant CS depends only on δ4S. For reasonable values of δ4S, CS is

well behaved; for example, CS ≈ 8.82 for δ4S = 1
5

and CS ≈ 10.47 for δ4S = 1
4
.

It is interesting to note that for S obeying the condition of the theorem, the re-

construction from noiseless data is exact. It is quite possible that for some matrices

A, this condition tolerates larger values of S than (1.2).

We would like to offer two comments. First, the matrix A is rectangular with

many more columns than rows. As such, most of its singular values are zero. As

emphasized earlier, the fact that the severely ill-posed matrix inversion keeps the

perturbation from “blowing up” is rather remarkable and perhaps unexpected.

Second, no recovery method can perform fundamentally better for arbitrary

perturbations of size ε. To see why this is true, suppose we had available an oracle

that knew, in advance, the support T0 of x0. With this additional information, the

problem is well-posed and we could reconstruct x0 by the method of least squares:

x̂ =
{

(A∗
T0

AT0
)−1 A∗

T0
y on T0

0 elsewhere.

Lacking any other information, we could easily argue that no method would exhibit

a fundamentally better performance. Now of course, x̂−x0 = 0 on the complement

of T0, while on T0

x̂ − x0 = (A∗
T0

AT0
)−1 A∗

T0
e,

and since by hypothesis, the eigenvalues of A∗
T0

AT0
are well behaved,2

‖x̂ − x0‖�2
≈ ‖A∗

T0
e‖�2

≈ ε,

at least for perturbations concentrated in the row space of AT0
. In short, obtaining

a reconstruction with an error term whose size is guaranteed to be proportional to

the noise level is the best we can hope for.

Remarkably, stable recovery is also guaranteed for signals that are approxi-

mately sparse because we have the following companion theorem:

2 Observe the role played by the singular values of AT0
in the analysis of the oracle error.
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THEOREM 1.2 Suppose that x0 is an arbitrary vector in R
m, and let x0,S be the

truncated vector corresponding to the S largest values of x0 (in absolute value).

Under the hypotheses of Theorem 1.1, the solution x� to (P2) obeys

(1.4) ‖x� − x0‖�2
≤ C1,S · ε + C2,S · ‖x0 − x0,S‖�1√

S
.

For reasonable values of δ4S, the constants in (1.4) are well behaved; for example,

C1,S ≈ 12.04 and C2,S ≈ 8.77 for δ4S = 1
5
.

Roughly speaking, the theorem says that minimizing �1 stably recovers the

S largest entries of an m-dimensional unknown vector x from only n measure-

ments.

We now specialize this result to a commonly discussed model in mathematical

signal processing, namely, the class of compressible signals. We say that x0 is

compressible if its entries obey a power law

(1.5) |x0|(k) ≤ Cr · k−r ,

where |x0|(k) is the k th largest value of x0 (|x0|(1) ≥ · · · ≥ |x0|(m)), r ≥ 1, and Cr

is a constant that depends only on r . Such a model is appropriate for the wavelet

coefficients of a piecewise smooth signal, for example. If x0 obeys (1.5), then

‖x0 − x0,S‖�1√
S

≤ C ′
r · S−r+1/2.

Observe now that in this case

‖x0 − x0,S‖�2
≤ C ′′

r · S−r+1/2,

and for generic elements obeying (1.5), there are no fundamentally better estimates

available. Hence, we see that from only n measurements, we achieve an approx-

imation error that is almost as good as we would have obtained had we known

everything about the signal x0 and selected its S largest entries.

As a last remark, we would like to point out that in the noiseless case, Theorem

1.2 improves upon an earlier result from Candès and Tao; see also [8]. It is sharper

in the sense that (1) this is a deterministic statement and there is no probability of

failure, (2) it is universal in that it holds for all signals, (3) it gives upper estimates

with better bounds and constants, and (4) it holds for a wider range of values of S.

1.3 Examples

It is of course of interest to know which matrices obey the uniform uncertainty

principle with good isometry constants. Using tools from random matrix theory,

[3, 5, 10] give several examples of matrices such that (1.2) holds for S on the order

of n to within log factors. Examples include (proofs and additional discussion can

be found in [5]):
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(1) Random matrices with i.i.d. entries. Suppose the entries of A are indepen-

dent and identically distributed (i.i.d.) Gaussian random variables with mean zero

and variance 1
n
; then [5, 10, 17] show that the condition for Theorem 1.1 holds with

overwhelming probability when

S ≤ C · n

log(m/n)
.

In fact, [4] gives numerical values for the constant C as a function of the ratio

n/m. The same conclusion applies to binary matrices with independent entries

taking values ±1/
√

n with equal probability.

(2) Fourier ensemble. Suppose now that A is obtained by selecting n rows

from the m × m discrete Fourier transform matrix and renormalizing the columns

so that they are unit-normed. If the rows are selected at random, the condition

for Theorem 1.1 holds with overwhelming probability for S ≤ C · n/(log m)6 [5].

(For simplicity, we have assumed that A takes on real-valued entries although our

theory clearly accommodates complex-valued matrices so that our discussion holds

for both complex- and real-valued Fourier transforms.)

This case is of special interest, as reconstructing a digital signal or image from

incomplete Fourier data is an important inverse problem with applications in bio-

medical imaging (MRI and computed tomography), astrophysics (interferometric

imaging), and geophysical exploration.

(3) General orthogonal measurement ensembles. Suppose A is obtained by

selecting n rows from an m × m orthonormal matrix U and renormalizing the

columns so that they are unit normed. Then [5] shows that if the rows are selected

at random, the condition for Theorem 1.1 holds with overwhelming probability

provided

(1.6) S ≤ C · 1

µ2
· n

(log m)6
,

where µ := √
m maxi, j |Ui, j |. Observe that for the Fourier matrix, µ = 1, and thus

(1.6) is an extension of the result for the Fourier ensemble.

This fact is of significant practical relevance because in many situations, signals

of interest may not be sparse in the time domain but rather may be (approximately)

decomposed as a sparse superposition of waveforms in a fixed orthonormal basis

�; for instance, piecewise smooth signals have approximately sparse wavelet ex-

pansions. Suppose that we use as test signals a set of n vectors taken from a second

orthonormal basis �. We then solve (P1) in the coefficient domain

(P′
1) min ‖α‖�1

subject to Aα = y,

where A is obtained by extracting n rows from the orthonormal matrix U = ��∗.

The recovery condition then depends on the mutual coherence µ between the mea-

surement basis � and the sparsity basis � that measures the similarity between �

and �; µ(�,�) = √
m max |〈φk, ψj 〉|, φk ∈ �, ψj ∈ �.
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1.4 Prior Work and Innovations

The problem of recovering a sparse vector by minimizing �1 under linear equal-

ity constraints has recently received much attention, mostly in the context of basis

pursuit, where the goal is to uncover sparse signal decompositions in overcom-

plete dictionaries. We refer the reader to [11, 13] and the references therein for a

full discussion.

We would especially like to note two works by Donoho, Elad, and Temlyakov

[12] and Tropp [18] that also study the recovery of sparse signals from noisy ob-

servations by solving (P2) (and other closely related optimization programs), and

give conditions for stable recovery. In [12], the sparsity constraint on the underly-

ing signal x0 depends on the magnitude of the maximum entry of the Gram matrix

M(A) = maxi, j :i �= j |(A∗ A)|i, j . Stable recovery occurs when the number of nonze-

ros is at most (M−1 +1)/4. For instance, when A is a Fourier ensemble and n is on

the order of m, we will have M at least of the order 1/
√

n (with high probability),

meaning that stable recovery is known to occur when the number of nonzeros is

about at most O(
√

n). In contrast, the condition for Theorem 1.1 will hold when

this number is about n/(log m)6 due to the range of support sizes for which the

uniform uncertainty principle holds. In [18], a more general condition for stable

recovery is derived. For the measurement ensembles listed in the previous section,

however, the sparsity required is still on the order of
√

n in the situation where n

is comparable to m. In other words, whereas these results require at least O(
√

m)

observations per unknown, our results show that—ignoring loglike factors—only

O(1) are, in general, sufficient.

More closely related is the very recent work of Donoho [9], who shows a ver-

sion of (1.3) in the case where A ∈ R
n×m is a Gaussian matrix with n proportional

to m, with unspecified constants for both the support size and that appearing in

(1.3). Our main claim is on a very different level since it is (1) deterministic (it

can of course be specialized to random matrices) and (2) widely applicable since

it extends to any matrix obeying the condition δ3S + 3δ4S < 2. In addition, the

argument underlying Theorem 1.1 is short and simple, giving precise and sharper

numerical values.

Finally, we would like to point out connections with fascinating ongoing work

on fast randomized algorithms for sparse Fourier transforms [14, 19]. Suppose

x0 is a fixed vector with |T0| nonzero terms, for example. Then [14] shows that

it is possible to randomly sample the frequency domain |T0| poly(log m) times

(poly(log m) denotes a polynomial term in log m) and to reconstruct x0 from this

frequency data with positive probability. We do not know whether these algorithms

are stable in the sense described in this paper or whether they can be modified to

be universal; here, an algorithm is said to be universal if it reconstructs exactly all

signals of small support.
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2 Proofs

2.1 Proof of Theorem 1.1: Sparse Case

The proof of the theorem makes use of two geometrical facts about the solution

x� to (P2).

(1) Tube constraint. First, Ax� is within 2ε of the “noisefree” observations

Ax0 thanks to the triangle inequality

(2.1) ‖Ax� − Ax0‖�2
≤ ‖Ax� − y‖�2

+ ‖Ax0 − y‖�2
≤ 2ε.

Geometrically, this says that x� is known to be in a cylinder around the n-dimen-

sional plane Ax0.

(2) Cone constraint. Since x0 is feasible, we must have ‖x�‖�1
≤ ‖x0‖�1

.

Decompose x� as x� = x0 + h. As observed in [13],

‖x0‖�1
− ‖hT0

‖�1
+ ‖hT c

0
‖�1

≤ ‖x0 + h‖�1
≤ ‖x0‖�1

,

where T0 is the support of x0, and hT0
(t) = h(t) for t ∈ T0 and zero elsewhere

(similarly for hT c
0
). Hence, h obeys the cone constraint

(2.2) ‖hT c
0
‖�1

≤ ‖hT0
‖�1

,

which expresses the geometric idea that h must lie in the cone of descent of the

�1-norm at x0.

Figure 2.1 illustrates both of these geometrical constraints. Stability follows

from the fact that the intersection between (2.1) (‖Ah‖�2
≤ 2ε) and (2.2) is a

set with small radius. This holds because every vector h in the �1-cone (2.2) is

approximately orthogonal to the null space of A. We shall prove that ‖Ah‖�2
≈

‖h‖�2
and together with (2.1), this establishes the theorem.

We begin by dividing T c
0 into subsets of size M (we will choose M later) and

enumerate T c
0 as n1, . . . , nN−|T0| in decreasing order of magnitude of hT c

0
. Set

Tj = {n�, ( j − 1)M + 1 ≤ � ≤ j M}. That is, T1 contains the indices of the M

largest coefficients of hT c
0
, T2 contains the indices of the next M largest coefficients,

and so on.

With this decomposition, the �2-norm of h is concentrated on T01 = T0 ∪ T1.

Indeed, the k th-largest value of hT c
0

obeys

|hT c
0
|(k) ≤ ‖hT c

0
‖�1

k
,

and therefore

‖hT c
01
‖2

�2
≤ ‖hT c

0
‖2

�1

m∑
k=M+1

1

k2
≤ ‖hT c

0
‖2

�1

M
.

Further, the �1-cone constraint gives

‖hT c
01
‖2

�2
≤ ‖hT0

‖2
�1

M
≤ ‖hT0

‖2
�2

· |T0|
M

,
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FIGURE 2.1. Geometry in R
2. Here, the point x0 is a vertex of the �1-

ball, and the shaded area represents the set of points obeying both the

tube and the cone constraints. By showing that every vector in the cone

of descent at x0 is approximately orthogonal to the null space of A, we

will ensure that x� is not too far from x0.

and thus

(2.3) ‖h‖2
�2

= ‖hT01
‖2

�2
+ ‖hT c

01
‖2

�2
≤

(
1 + |T0|

M

)
· ‖hT01

‖2
�2

.

Observe now that

‖Ah‖�2
=

∥∥∥∥AT01
hT01

+
∑
j≥2

ATj
hTj

∥∥∥∥
�2

≥ ‖AT01
hT01

‖�2
−

∥∥∥∥ ∑
j≥2

ATj
hTj

∥∥∥∥
�2

≥ ‖AT01
hT01

‖�2
−

∑
j≥2

‖ATj
hTj

‖�2
,

and thus

‖Ah‖�2
≥

√
1 − δM+|T0| ‖hT01

‖�2
−

√
1 + δM

∑
j≥2

‖hTj
‖�2

.

Set ρ = |T0|/M . As we shall see later,

(2.4)
∑
j≥2

‖hTj
‖�2

≤ √
ρ · ‖hT0

‖�2
,

which gives

(2.5) ‖Ah‖�2
≥ C|T0|,M · ‖hT01

‖�2
, C|T0|,M :=

√
1 − δM+|T0| −

√
ρ
√

1 + δM .
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It then follows from (2.3) and ‖Ah‖�2
≤ 2ε that

(2.6) ‖h‖�2
≤

√
1 + ρ · ‖hT01

‖�2
≤

√
1 + ρ

C|T0|,M

· ‖Ah‖�2
≤ 2

√
1 + ρ

C|T0|,M

· ε,

provided that the denominator is of course positive.

We may specialize (2.6) and take M = 3|T0|. The denominator is positive

if δ3|T0| + 3δ4|T0| < 2 (this is true if δ4|T0| < 1
2
, say) which proves the theorem.

Note that if δ4S is a little smaller, the constant in (1.3) is not large. For δ4S ≤ 1
5
,

CS ≈ 8.82, while for δ4S ≤ 1
4
, CS ≈ 10.47 as claimed.

It remains to argue about (2.4). Observe that by construction, the magnitude of

each coefficient in Tj+1 is less than the average of the magnitudes in Tj :

|hTj+1
(t)| ≤ ‖hTj

‖�1

M
.

Then

‖hTj+1
‖2

�2
≤ ‖hTj

‖2
�1

M

and (2.4) follows from

∑
j≥2

‖hTj
‖�2

≤
∑
j≥1

‖hTj
‖�1√

M
≤ ‖hT0

‖�1√
M

≤
√

|T0|
M

· ‖hT0
‖�2

.

2.2 Proof of Theorem 1.2: General Case

Suppose now that x0 is arbitrary. We let T0 be the indices of the largest |T0|
coefficients of x0 (the value |T0| will be decided later) and just as before, we divide

up T c
0 into sets T1, . . . , TJ of equal size |Tj | = M , j ≥ 1, by decreasing order of

magnitude. The cone constraint (2.2) may not hold but a variation does. Indeed,

x = x0 + h is feasible and therefore

‖x0,T0
‖�1

− ‖hT0
‖�1

− ‖x0,T c
0
‖�1

+ ‖hT c
0
‖�1

≤ ‖x0,T0
+ hT0

‖�1
+ ‖x0,T c

0
+ hT c

0
‖�1

≤ ‖x0‖�1
,

which gives

(2.7) ‖hT c
0
‖�1

≤ ‖hT0
‖�1

+ 2‖x0,T c
0
‖�1

.

The rest of the argument now proceeds essentially as before. First, h is in some

sense concentrated on T01 = T0 ∪ T1 since with the same notation

‖hT c
01
‖�2

≤ ‖hT0
‖�1

+ 2‖x0,T c
0
‖�1√

M
≤ √

ρ ·
(

‖hT0
‖�2

+ 2‖x0,T c
0
‖�1√|T0|

)
,

which in turn implies

(2.8) ‖h‖�2
≤ (1 + √

ρ)‖hT01
‖�2

+ 2
√

ρ · η, η := ‖x0,T c
0
‖�1√|T0|

.
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TABLE 3.1. Recovery results for sparse one-dimensional signals.

Gaussian white noise of variance σ 2 was added to each of the n = 300

measurements, and (P2) was solved with ε chosen such that ‖e‖2 ≤ ε

with high probability (see (3.1)).

σ 0.01 0.02 0.05 0.1 0.2 0.5

ε 0.19 0.37 0.93 1.87 3.74 9.34

‖x� − x0‖2 0.25 0.49 1.33 2.55 4.67 6.61

TABLE 3.2. Recovery results for compressible one-dimensional signals.

Gaussian white noise of variance σ 2 was added to each measurement,

and (P2) was solved with ε as in (3.1).

σ 0.01 0.02 0.05 0.1 0.2 0.5

ε 0.19 0.37 0.93 1.87 3.74 9.34

‖x� − x0‖2 0.69 0.76 1.03 1.36 2.03 3.20

Better estimates via Pythagoras’ formula are of course possible (see (2.3)), but

we ignore such refinements in order to keep the argument as simple as possible.

Second, the same reasoning as before gives∑
j≥2

‖hTj
‖�2

≤ ‖hT c
0
‖�1√

M
≤ √

ρ · (‖hT0
‖�2

+ 2η)

and thus

‖Ah‖�2
≥ C|T0|,M · ‖hT01

‖�2
− 2

√
ρ
√

1 + δM · η,

where C|T0|,M is the same as in (2.5). Since ‖Ah‖ ≤ 2ε, we again conclude that

‖hT01
‖�2

≤ 2

C|T0|,M

· (
ε + √

ρ
√

1 + δM η
)

(note that the constant in front of the ε-factor is the same as in the truly sparse

case), and the claim (1.4) follows from (2.8). Specializing the bound to M = 3|T0|
and assuming that δS ≤ 1

5
gives the numerical values reported in the statement of

the theorem.

3 Numerical Examples

This section illustrates the effectiveness of the recovery by means of a few

simple numerical experiments. Our simulations demonstrate that in practice, the

constants in (1.3) and (1.4) seem to be quite low.

Our first series of experiments is summarized in Tables 3.1 and 3.2. In ach ex-

periment, a signal of length 1024 was measured with the same 300×1024 Gaussian

measurement ensemble. The measurements were then corrupted by additive white

Gaussian noise: yk = 〈x0, ak〉 + ek with ek ∼ N (0, σ 2) for various noise levels



STABLE SIGNAL RECOVERY 1217

(a) (b)

(c) (d)

FIGURE 3.1. (a) Example of a sparse signal used in the one-dimensional

experiments. There are 50 nonzero coefficients taking values ±1.

(b) Sparse signal recovered from noisy measurements with σ = 0.05.

(c) Example of a compressible signal used in the one-dimensional ex-

periments. (d) Compressible signal recovered from noisy measurements

with σ = 0.05.

σ . The squared norm of the error ‖e‖2
�2

is a chi-square random variable with mean

σ 2n and standard deviation σ 2
√

2n; owing to well-known concentration inequali-

ties, the probability that ‖e‖2
�2

exceeds its mean plus 2 or 3 standard deviations is

small. We then solve (P2) with

(3.1) ε2 = σ 2(n + λ
√

2n)

and select λ = 2 although other choices are of course possible.

Table 3.1 charts the results for sparse signals with 50 nonzero components.

Ten signals were generated by choosing 50 indices uniformly at random and then

selecting either −1 or 1 at each location with equal probability. An example of such

a signal is shown in Figure 3.1(a). Previous experiments [3] demonstrated that we

are empirically able to recover such signals perfectly from 300 noiseless Gaussian

measurements, which is indeed the case for each of the 10 signals considered here.

The average value of the recovery error (taken over the 10 signals) is recorded in
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the bottom row of Table 3.1. In this situation, the constant in (1.3) appears to be

less than 2.

Table 3.2 charts the results for 10 compressible signals whose components are

all nonzero but decay as in (1.5). The signals were generated by taking a fixed

sequence

(3.2) xsort(t) = (5.819) · t−10/9,

randomly permuting it, and multiplying by a random sign sequence (the constant in

(3.2) was chosen so that the norm of the compressible signals is the same—
√

50—

as the sparse signals in the previous set of experiments). An example of such a

signal is shown in Figure 3.1(c). Again, 10 such signals were generated, and the

average recovery error recorded in the bottom row of Table 3.2. For small values of

σ , the recovery error is dominated by the approximation error—the second term on

the right-hand side of (1.4). As a reference, the 50-term nonlinear approximation

errors of these compressible signals is around 0.47; at low signal-to-noise ratios

our recovery error is about 1.5 times this quantity. As the noise power gets large,

the recovery error becomes less than ε, just as in the sparse case.

Finally, we apply our recovery procedure to realistic imagery. Photograph-

like images, such as the 256 × 256 pixel Boats image shown in Figure 3.2(a),

have wavelet coefficient sequences that are compressible (see [7]). The image is a

65 536-dimensional vector, making the standard Gaussian ensemble too unwieldy.3

Instead, we make 25 000 measurements of the image using a scrambled real Fourier

ensemble; i.e., the test functions ak(t) are real-valued sines and cosines (with ran-

domly selected frequencies) that are temporally scrambled by randomly permuting

the m time points. This ensemble is obtained from the (real-valued) Fourier en-

semble by a random permutation of the columns. For our purposes here, the test

functions behave like a Gaussian ensemble in the sense that from n measurements,

one can recover signals with about n/5 nonzero components exactly from noise-

less data. There is a computational advantage as well, since we can apply A and

its adjoint A∗ to an arbitrary vector by means of an m-point fast Fourier transform.

To recover the wavelet coefficients of the object, we simply solve

(P′
2) min ‖α‖�1

subject to ‖AW ∗α − y‖�2
≤ ε,

where A is the scrambled Fourier ensemble and W is the discrete Daubechies-8

orthogonal wavelet transform.

We will attempt to recover the image from measurements perturbed in two

different manners. First, as in the one-dimensional experiments, the measure-

ments were corrupted by additive white Gaussian noise with σ = 5 · 10−4 so

that σ · √
n = 0.0791. As shown in Figure 3.3, the noise level is significant;

the signal-to-noise ratio is ‖Ax0‖�2
/‖e‖�2

= 4.5. With ε = 0.0798 as in (3.1),

the recovery error is ‖α� − α0‖�2
= 0.1303 (the original image has unit norm).

3 Storing a double-precision 25 000×65 536 matrix would use around 13.1 gigabytes of memory,

about the capacity of three standard DVDs.
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(a) (b)

(c)

FIGURE 3.2. (a) Original 256 × 256 Boats image. (b) Recovery via

(TV) from n = 25 000 measurements corrupted with Gaussian noise.

(c) Recovery via (TV) from n = 25 000 measurements corrupted by

roundoff error. In both cases, the reconstruction error is less than the

sum of the nonlinear approximation and measurement errors.

For comparison, the 5000-term nonlinear approximation error for the image is

‖α0,5000 − α0‖�2
= 0.050. Hence the recovery error is very close to the sum of

the approximation error and the size of the perturbation.

Another type of perturbation of practical interest is roundoff or quantization

error. In general, the measurements cannot be taken with arbitrary precision, ei-

ther because of limitations inherent to the measuring device, or because we wish to

communicate the measurements using some small number of them. Unlike addi-

tive white Gaussian noise, roundoff error is deterministic and signal dependent—a

situation our methodology deals with easily.

We conducted the roundoff error experiment as follows: Using the same scram-

bled Fourier ensemble, we took 25 000 measurements of Boats and rounded (quan-

tized) them to one digit (we restricted the values of the measurements to be one
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(a) (b) (c)

FIGURE 3.3. (a) Noiseless measurements Ax0 of the Boats image.

(b) Gaussian measurement error with σ = 5 ·10−4 in the recovery exper-

iment summarized in the left column of Table 3.3. The signal-to-noise

ratio is ‖Ax0‖�2/‖e‖�2 = 4.5. (c) Roundoff error in the recovery exper-

iment summarized in the right column of Table 3.3. The signal-to-noise

ratio is ‖Ax0‖�2/‖e‖�2 = 4.3.

of ten preset values, equally spaced). The measurement error is shown in Fig-

ure 3.3(c), and the signal-to-noise ratio is ‖Ax0‖�2
/‖e‖�2

= 4.3. To choose ε, we

used a rough model for the size of the perturbation. To a first approximation, the

roundoff error for each measurement behaves like a uniformly distributed random

variable on (− q

2
,

q

2
), where q is the distance between quantization levels. Under

this assumption, the size of the perturbation ‖e‖2
�2

behaves like a sum of squares of

uniform random variables

Y =
n∑

k=1

X2
k , Xk ∼ Uniform

(
−q

2
,

q

2

)
.

Here, mean(Y ) = nq2/12 and std(Y ) = √
nq2/(6

√
5). Again, Y is no larger than

mean(Y ) + λ std(Y ) with high probability, and we select

ε2 = n
q2

12
+ λ

√
n

q2

6
√

5
,

where as before, λ = 2. The results are summarized in the second column of

Table 3.3. As in the previous case, the recovery error is very close to the sum of

the approximation and measurement errors. Also note that despite the crude nature

of the perturbation model, an accurate value of ε is chosen.

Although the errors in the recovery experiments summarized in the third row

of Table 3.3 are as we had hoped, the recovered images tend to contain visually

displeasing high-frequency oscillatory artifacts. To address this problem, we can

solve a slightly different optimization problem to recover the image from the same

corrupted measurements. In place of (P′
2), we solve

(TV) min ‖x‖T V subject to ‖Ax − y‖�2
≤ ε
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TABLE 3.3. Image recovery results. Measurements of the Boats image

were corrupted in two different ways: by adding white noise (left col-

umn) with σ = 5 · 10−4 and by rounding off to one digit (right column).

In each case, the image was recovered in two different ways: by solving

(P′
2) (third row) and solving (TV) (fourth row). The (TV) images are

shown in Figure 3.2.

White noise Round-off

‖e‖�2
0.0789 0.0824

ε 0.0798 0.0827

‖α� − α0‖�2
0.1303 0.1323

‖α�

T V − α0‖�2
0.0837 0.0843

where

‖x‖T V =
∑
i, j

√
(xi+1, j − xi, j )2 + (xi, j+1 − xi, j )2 =

∑
i, j

|(∇x)i, j |

is the total variation [16] of the image x : the sum of the magnitudes of the (dis-

cretized) gradient. By substituting (TV) for (P′
2), we are essentially changing our

model for photographlike images. Instead of looking for an image with a sparse

wavelet transform that explains the observations, program (TV) searches for an im-

age with a sparse gradient (i.e., without spurious high-frequency oscillations). In

fact, it is shown in [3] that just as signals which are exactly sparse can be recovered

perfectly from a small number of measurements by solving (P2) with ε = 0, sig-

nals with gradients that are exactly sparse can be recovered by solving (TV) (again

with ε = 0).

Figures 3.2(b) and (c) and the fourth row of Table 3.3 show the (TV) recov-

ery results. The reconstructions have smaller error and do not contain visually

displeasing artifacts.

4 Discussion

The convex programs (P2) and (TV) are simple instances of a class of problems

known as second-order cone programs (SOCPs). As an example, one can recast

(TV) as

(4.1) min
∑
i, j

ui, j subject to − ui, j ≤ ‖Gi, j x‖�2
≤ ui, j , ‖Ax − y‖�2

≤ ε,

where Gi, j x = (xi+1, j − xi, j , xi, j+1 − xi, j ) [15]. SOCPs can be solved efficiently

by interior-point methods [1] and hence our approach is computationally tractable.

From a certain viewpoint, recovering via (P2) is using a priori information about

the nature of the underlying image, i.e., that it is sparse in some known orthobasis,

to overcome the shortage of data. In practice, we could of course use far more

sophisticated models to perform the recovery. Obvious extensions include looking
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for signals that are sparse in overcomplete wavelet or curvelet bases or for images

that have certain geometrical structure. The numerical experiments in Section 3

show how changing the model can result in a higher-quality recovery from the

same set of measurements.
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